# Comparative Analysis of the Genomes of *Bombyx mandarina* and *Bombyx mori* Nucleopolyhedroviruses

# Yi-Peng Xu<sup>1</sup>, Zheng-Pei Ye<sup>2</sup>, Chang-Ying Niu<sup>2</sup>, Yan-Yuan Bao<sup>1</sup>, Wen-Bing Wang<sup>3</sup>, Wei-De Shen<sup>3</sup>, and Chuan-Xi Zhang<sup>1\*</sup>

<sup>1</sup>Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310029, P. R. China <sup>2</sup>Institute of Insect Resources, Huazhong Agricultural University, Wuhan 430070, P. R. China <sup>3</sup>School of Life Science, Suzhou University, Suzhou 215123, P. R. China

(Received June 26, 2009 / Accepted August 3, 2009)

The Bombyx mandarina nucleopolyhedrovirus (BomaNPV) S1 strain can infect the silkworm, Bombyx mori, but is significantly less virulent than B. mori nucleopolyhedrovirus (BmNPV) T3 strain. The complete nucleotide sequence of the S1 strain of BomaNPV was determined and compared with the BmNPV T3 strain. The circular, double stranded DNA genome of the S1 strain was 126,770 nucleotides long (GenBank accession no. FJ882854), with a G+C content of 40.23%. The genome contained 133 potential ORFs. Most of the putative proteins were more than 96% identical to homologs in the BmNPV T3 strain, except for bro-a, lef-12, bro-c, and bro-d. Compared with the BmNPV T3 strain, however, this genome did not encode the bro-b and bro-e genes. In addition, hr1 lacked two repeat units, while hr2L, hr2R, hr3, hr4L, hr4R, and hr5 were similar to the corresponding hrs in the T3 strain. The sequence strongly suggested that BomaNPV and BmNPV are variants with each other, and supported the idea that baculovirus strain heterogeneity may often be caused by variation in the hrs and bro genes.

Keywords: B. mandarina, B. mori, nucleopolyhedrovirus, genome sequence comparison

The baculoviruses form a diverse group of viruses with large, double-stranded, circular DNA genomes ranging from 80 to 180 kb, which are packaged in enveloped, rod-shaped virions. At present, this family can be devided into four genera: Alphabaculovirus (lepidopteran-specific NPV), Betabaculovirus (lepidopteran-specific Granuloviruses), Gammabaculovirus (hymenopteran-specific NPV), and Deltabaculovirus (dipteranspecific NPV) (Jehle et al., 2006). During the life cycle, two types of baculoviral virions, occlusion-derived virions (ODVs) and budded virions (BVs), are produced. ODVs transmit infection through an oral route, establishing a primary infection of the midgut of the host, while BVs are responsible for systemic infection, spreading the virus from cell to cell within the host (Keddie et al., 1989). Currently more than forty-eight baculovirus genomes have been sequenced because of their importance for pest control and expression of recombinant proteins. Most baculoviruses infect insects of the orders Lepidoptera, Hymenoptera, and Diptera.

The wild silkworm, *Bombyx mandarina*, which is an insect pest of mulberry production, is commonly believed to have the same ancestor as the domesticated silkworm, *Bombyx mori*, based on similar genetic, morphological, and physiological characteristics (Kawaguchi, 1928; Astaurov *et al.*, 1959; Yoshitake, 1968; Chikushi, 1972; Nakamura *et al.*, 1999), although they have different chromosome numbers (*B. mandarina*, n=27; *B. mori* n=28). Therefore, the study of *B. mandarina* nucleopolyhedrovirus (BomaNPV), which is the

natural pathogenic virus of *Bombyx mandarina*, will contribute to the understanding of the evolutionary relationship between BomaNPV and *B. mori* nucleopolyhedrovirus (BmNPV) and the controlling of the virus disease in the sericulture, and to the increased understanding of the baculovirus family. Currently little is known about BomaNPV, however. In this study, we sequenced the complete genome of BomaNPV and, in addition, performed a comparative analysis of the genomes of BomaNPV (S1 strain) and BmNPV (T3 strain). Furthermore, a polyhedral inclusion body (PIB) bioassay was carried out to compare the infectivity of BomaNPV and BmNPV T3 for *B. mori* larvae.

#### Materials and Methods

#### Virus and virus DNA

The BomaNPV was originally isolated from a diseased larva of *B. mandarina* in the Jiangsu Province of China. BomaNPV was plaquepurified in BmN cells and then propagated by infecting 5<sup>th</sup> instar larvae of the silkworm. The occlusion bodies were purified by sucrosegradient centrifugation. Virus DNA was extracted from the purified occlusions as previously described (Ma *et al.*, 2006).

#### Nucleotide sequence determination

The purified virus genomic DNA was sheared into 200- to 300-bp fragments by ultrasonication and sequenced by Solexa technology using the Solexa 1G Genome Analyzer in the Zhejiang-California International NanoSystems Institute, according to the manufacturer's protocols. Ambiguous regions, which contain hrs and *bro* genes, were amplified by PCR using specific primers (Table 1) and cloned into the pMD18-T vector (TaKaRa, China). All the clones were sequenced

<sup>\*</sup> For correspondence. E-mail: chxzhang@zju.edu.cn; Tel: +86-571-8697-1697; Fax: +86-571-8697-1697

| Tuble II Tillin |                               |                                |                    |  |  |  |  |  |
|-----------------|-------------------------------|--------------------------------|--------------------|--|--|--|--|--|
| Primers         | Amplifying regions            | Sequence $(5' \rightarrow 3')$ | Locus <sup>a</sup> |  |  |  |  |  |
| BRO-AF          | bro-a                         | GTTGGAGCCATGTCGTTACTAC         | 20,780—20,801      |  |  |  |  |  |
| BRO-AR          |                               | CGCTAATGATGCAAATGGCTTTC        | 22,031—22,053      |  |  |  |  |  |
| hr2F            | hr2L, <i>fgf</i> , and hr2R   | GCACACGGACAAAGACGATCTG         | 22,379—22,400      |  |  |  |  |  |
| hr2R            |                               | CAAACGCATACGAATTGATGGAC        | 24,376—24,398      |  |  |  |  |  |
| hr3F            | hr3                           | ACATGGCGTGTCCTGAAGAATTG        | 64,662—64,684      |  |  |  |  |  |
| hr3R            |                               | CTTGAAACGCGTGTATGCGTCG         | 66,445—66,466      |  |  |  |  |  |
| BRO-BF          | bro-b                         | GGAATATATGCCACCGCATGCAC        | 76,465—76,487      |  |  |  |  |  |
| BRO-BR          |                               | GCGACTGGCACAATTATCACGA         | 78,710—78,731      |  |  |  |  |  |
| hr4LF           | hr4L                          | TGCTTTCGACCGCATATCCCTT         | 86,155—86,176      |  |  |  |  |  |
| hr4LR           |                               | ACCTGTCTCTGGCCTTTTCTAC         | 86,816—86,837      |  |  |  |  |  |
| hr4RF           | hr4R                          | CTTGAGAGGTTTGCGGTTGTTG         | 89,361—89,382      |  |  |  |  |  |
| hr4RR           |                               | CGATACAACTACGAAGTGCTGTG        | 90,090—90,112      |  |  |  |  |  |
| hr5F            | hr5                           | GCACAATGTAACTAGTACACTCAAC      | 106,768—106,792    |  |  |  |  |  |
| hr5R            |                               | GTCCACATTGTCGACTTGCTCT         | 107,755—107,776    |  |  |  |  |  |
| hr1F            | hr1                           | GAAGTCGTCGATAAAACTGACGC        | 123,623—123,645    |  |  |  |  |  |
| hr1R            |                               | CTGTAAATAGTTGTGCCAACGC         | 124,442—124,463    |  |  |  |  |  |
| BRO-EF          | <i>bro-d</i> and <i>bro-e</i> | GGCATTAATCGCACCGGTTACA         | 124,794—124,815    |  |  |  |  |  |
| BRO-ER          |                               | CTTTGAAGTGCAGCGCATCAAC         | 126,876—126,896    |  |  |  |  |  |

Table 1. Primers designed to amplify ambiguous regions of BomaNPV genome

<sup>a</sup> Locus in the genomic sequence of BmNPV T3 (GenBank accession no. NC 001962).

using the primers M13F(-47) and M13R(-48).

#### **DNA** sequence analysis

The nucleotide composition of the genomic DNA and predicted ORFs were analyzed using Genetyx-win Software (Software Development Co. Ltd, Japan) and the DNASTAR software. Relevant homologous ORFs were checked with reference to the BmNPV T3 strain and AcMNPV C6. Proteins coded by ORFs were translated using the EditSeq program, and amino acid alignments were carried out by the MegAlign program.

## B. mori larvae bioassay

The LC<sub>50</sub> values of PIB were determined using per os infection. After being starved for 3 h, the newly molted fourth instar *B. mori* larvae (strain Lanzhou 5) were fed with mulberry leaves, to which different concentration of PIBs ( $10^9$ ,  $10^8$ ,  $10^7$ ,  $10^6$ ,  $10^5$  PIB/ml) had been applied. Thirty larvae were used for each concentration, and the mortality was counted every 4 h.

The estimation of  $LC_{50}$  values, as well as the statistical analysis comparing the two viruses, were performed using the DPS data processing system for practical statistics (Tang and Feng, 2002), using Probit analysis (Finney, 1971).

# **Results and Discussion**

## Genome sequence analysis

The BomaNPV genome consisted of 126,770 nucleotides (GenBank accession no. FJ882854), with only 40.2% G+Cs. The size and G+C content most closely resembled the size and G+C content of the BmNPV T3 strain (128,413 kb, 40.4% G+Cs). The whole genome sequence of BomaNPV was 98.7% identical to that of BmNPV T3. There were 133 ORFs encoding predicted proteins of more than 60 amino acids, beginning with the *polyhedrin* gene. This genome also possessed eight ORFs encoding predicted products of fewer

than 60 aa, ORF7a (53aa), ORF58a (60aa), ORF69a (56aa), ORF91a (59aa), ORF94a (56aa), ORF97a (57aa), ORF109a (57aa), and ORF110 (56aa). The sequences encoding proteins with more than 60aa accounted for 89.54% of the whole genome, and the percentage increased to 90.39% if predicted ORFs encoding proteins with fewer than 60aa were taken into account. The location of ORFs, and the size of the corresponding predicted proteins are shown in Table 2. As in BmNPV T3, seven homologous repeat regions (hrs) were also present in this genome, though hr1 showed some difference. This result suggested that BomaNPV and BmNPV T3 were variants with each other, which might be due to the close evolutionary relationship between *B. mandarina* and *B. mori*.

# Comparison of the ORFs between BomaNPV and BmNPV T3

As shown in Table 2, the predicted polypeptides encoded by 133 BomaNPV ORFs were highly similar to those of the BmNPV T3 strain with identical orientation and order of the putative ORFs. Most of them showed more than 95% identity, with the exception of bro-a (89.6%), lef-12 (93.2%), bro-c (95.0%), and bro-d (91.7%). Focusing on the small ORFs of fewer than 60aa, ORF110, and ORF69a should be paid more attention to. The ORF110 looked like its homolog in the BmNPV T3 strain, but without the 3' terminus, while ORF69a was unique to BomaNPV, and highly homologous to the 3' end of homologs of Ac-PNK/PNL (E (value=8e-15). However, excluding ORF69a, the other 7 small ORFs showed high degrees of identity with their counterparts in BmNPV T3. In BomaNPV, we could not find an ORF corresponding to ORF22a of BmNPV T3. In addition, extensive nucleotide changes, including substitutions, deletions and insertions, were observed in 102 ORFs, especially arif-1, bro-a, lef-12, broc, and bro-d. What's more, the bro-b and bro-e genes were absent in BomaNPV when compared to BmNPV T3.

# 104 Xu et al.

Table 2. Characteristics of putative ORFs of BomaNPV and BmNPV T3

|          |              | BomaNPV                                                |                | BmNPV T3 strain        |           |                 |                |                             |
|----------|--------------|--------------------------------------------------------|----------------|------------------------|-----------|-----------------|----------------|-----------------------------|
| ORF      | Name         | Position                                               | Length<br>(aa) | Predicted<br>Mr(×10-3) | ORF       | Name            | Length<br>(aa) | - Amino acid<br>identity (% |
| 1        | polyhedrin   | 1→738                                                  | 245            | 28.8                   | 1         | polyhedrin      | 245            | 100.0                       |
| 2        | orf1629      | 768←2396                                               | 542            | 60.7                   | 2         | orf1629         | 542            | 99.1                        |
| 3        | pk1          | 2395→3219                                              | 274            | 32.4                   | 3         | pk1             | 275            | 97.8                        |
| 4        | Ac11         | 3245←4267                                              | 340            | 39.8                   | 4         | Ac11            | 340            | 98.2                        |
| 5        | Ac13         | 4602←5597                                              | 331            | 39.3                   | 5         | Ac13            | 331            | 99.4                        |
| 6        | lef-1        | 5476←6289                                              | 270            | 31.1                   | 6         | lef-1           | 270            | 99.6                        |
| 7        | egt          | 6404→7924                                              | 506            | 57.1                   | 7         | egt             | 506            | 99.4                        |
| 7a       | unknown      | 7937→8098                                              | 53             | 6.2                    | 7a        | unknown         | 53             | 100.0                       |
| 8        | bv/odv-e26   | 8064→8753                                              | 229            | 26.2                   | 8         | bv/odv-e26      | 229            | 98.7                        |
| 9        | Ac17         | 8722→9354                                              | 210            | 24.0                   | 9         | Ac17            | 210            | 99.0                        |
| 10       | Ac18         | 9384←10454                                             | 356            | 41.4                   | 10        | Ac18            | 356            | 98.3                        |
| 11       | Ac19         | 10456→10788                                            | 110            | 12.5                   | 11        | Ac19            | 110            | 100.0                       |
| 12       | arif-1       | 10975←12231                                            | 418            | 47.8                   | 12        | arif-1          | 440            | 98.8                        |
| 13       | pif-2        | 12268→13416                                            | 382            | 43.8                   | 13        | pif-2           | 382            | 98.4                        |
| 14       | f            | 13519→15540                                            | 673            | 77.8                   | 14        | f               | 673            | 99.1                        |
| 15       | pkip         | 15570←16079                                            | 169            | 19.4                   | 15        | pkip            | 169            | 98.8                        |
| 16       | dbp          | 16119←17072                                            | 317            | 36.7                   | 16        | dbp             | 317            | 100.0                       |
| 17       | Ac26         | 17148→17537                                            | 129            | 14.5                   | 17        | Ac26            | 129            | 99.2                        |
| 18       | iap1         | 17539→18408                                            | 289            | 33.7                   | 18        | iap1            | 292            | 97.9                        |
| 19       | lef-6        | 18413→18934                                            | 173            | 20.4                   | 19        | lef-6           | 173            | 100.0                       |
| 20       | Ac29         | 19053←19268                                            | 71             | 8.6                    | 20        | Ac29            | 71             | 100.0                       |
| 21       | Ac30         | 19323←20741                                            | 472            | 55.7                   | 21        | Ac30            | 472            | 99.4                        |
| 22       | bro-a        | 20776←21768                                            | 330            | 37.0                   | 22        | bro-a           | 317            | 89.6                        |
|          | 0.0 4        |                                                        |                |                        | 22a       | unknown         | 54             | 94.4                        |
| 23       | sod          | 21992→22447                                            | 151            | 16.3                   | 23        | sod             | 151            | 98.0                        |
| 20       | hr2L         |                                                        | 101            | 10.5                   | 20        | hr2L            | 101            | 20.0                        |
| 24       | fgf          | 23377→23925                                            | 182            | 20.7                   | 24        | fgf             | 182            | 98.4                        |
|          | hr2R         |                                                        |                |                        |           | hr2R            |                |                             |
| 25       | Ac34         | 24337←24984                                            | 215            | 24.8                   | 25        | Ac34            | 215            | 99.1                        |
| 26       | ubiquitin    | 25005→25238                                            | 77             | 8.7                    | 26        | ubiquitin       | 77             | 100.0                       |
| 27       | 39k          | 25291←26124                                            | 277            | 31.5                   | 27        | 39k             | 277            | 100.0                       |
| 28       | lef-11       | 26118←26456                                            | 112            | 13.2                   | 28        | lef-11          | 112            | 98.2                        |
| 29       | bv-e31       | 26419←27072                                            | 217            | 25.5                   | 29        | bv-e31          | 217            | 100.0                       |
| 30       | p43          | 27140←28228                                            | 362            | 43.4                   | 30        | p43             | 362            | 99.4                        |
| 31       | p47          | 28236←29435                                            | 399            | 47.3                   | 31        | p47             | 399            | 99.0                        |
| 32       | lef-12       | 29440→29973                                            | 177            | 20.6                   | 32        | lef-12          | 183            | 93.2                        |
| 33       | gta          | 30049→31569                                            | 506            | 59.1                   | 33        | gta             | 506            | 99.2                        |
| 34       | Ac43         | 31583→31819                                            | 78             | 89.4                   | 34        | Ac43            | 78             | 98.7                        |
| 35       | Ac44         | 31800→32195                                            | 131            | 15.0                   | 35        | Ac44            | 131            | 99.2                        |
| 36       | Ac45         | 32197→32784                                            | 195            | 22.7                   | 36        | Ac45            | 193            | 99.5                        |
| 37       | odv-e66      | 32769→34880                                            | 703            | 79.2                   | 37        | odv-e66         | 702            | 98.9                        |
| 38       | ets          | 34976←35245                                            | 89             | 10.5                   | 38        | ets             | 89             | 100.0                       |
| 39       | lef-8        | 35491←38124                                            | 877            | 101.7                  | 39        | lef-8           | 877            | 99.8                        |
| 40       | Ac51         | 38151→39110                                            | 319            | 37.8                   | 40        | Ac51            | 319            | 99.4                        |
| 41       | Ac52         | 39101←39685                                            | 194            | 23.3                   | 41        | Ac52            | 194            | 100.0                       |
| 42       | Ac53         | 39687→40106                                            | 139            | 16.9                   | 42        | Ac53            | 139            | 100.0                       |
| 42a      | lef-10       | 40103→40339                                            | 78             | 8.5                    | 42a       | lef-10          | 78             | 98.7                        |
| 43       | vp1054       | $40103 \rightarrow 40339$<br>$40197 \rightarrow 41294$ | 365            | 42.0                   | 42a<br>43 | vp1054          | 365            | 100.0                       |
| 44       | Ac55         | $40197 \rightarrow 41294$<br>$41376 \rightarrow 41609$ | 505<br>77      | 8.6                    | 43<br>44  | Ac55            | 505<br>77      | 98.7                        |
| 44<br>45 | Ac56         | $41370 \rightarrow 41009$ $41611 \rightarrow 41865$    | 84             | 8.0<br>9.9             | 44<br>45  | Ac56            | 84             | 100.0                       |
| 43<br>46 | Ac50<br>Ac57 | $41011 \rightarrow 41803$ $42119 \rightarrow 42604$    | 84<br>161      | 9.9<br>19.1            | 43<br>46  | Ac50<br>Ac57    | 84<br>161      | 99.4                        |
|          |              |                                                        | 161            | 20.2                   | 46<br>47  | Ac57<br>Ac58/59 | 101            | 99.4<br>98.8                |
| 47       | Ac58/59      | 42622←43137                                            |                |                        |           |                 |                |                             |
| 48       | Ac60         | 43149←43400                                            | 83             | 9.8                    | 48        | Ac60            | 83             | 98.8                        |

Table 2. Continued

|          |            | BomaNPV              |                |                             |          | - Amino acid |                |               |
|----------|------------|----------------------|----------------|-----------------------------|----------|--------------|----------------|---------------|
| ORF      | Name       | Position             | Length<br>(aa) | Predicted $Mr(\times 10-3)$ | ORF      | Name         | Length<br>(aa) | identity (%)  |
| 49       | fp25       | 43549←44193          | 214            | 25.3                        | 49       | fp25         | 214            | 99.1          |
| 50       | lef-9      | 44297→45769          | 490            | 56.3                        | 50       | lef-9        | 490            | 99.6          |
| 51       | Ac63       | 45829→46296          | 155            | 18.6                        | 51       | Ac63         | 155            | 98.7          |
| 52       | gp37       | 46374←47258          | 294            | 33.8                        | 52       | gp37         | 294            | 98.3          |
| 53       | dnapol     | 47388←50357          | 989            | 114.8                       | 53       | dnapol       | 986            | 99.3          |
| 54       | Ac66       | 50366→52783          | 805            | 93.4                        | 54       | Ac66         | 805            | 99.1          |
| 55       | lef-3      | 52786←53943          | 385            | 44.9                        | 55       | lef-3        | 385            | 99.2          |
| 56       | odv-nc42   | 53962→54366          | 134            | 15.8                        | 56       | odv-nc42     | 134            | 100.0         |
| 57       | Ac69       | 54344→55132          | 262            | 30.4                        | 57       | Ac69         | 262            | 99.2          |
| 58       | iap2       | 55281→56030          | 249            | 28.7                        | 58       | iap2         | 249            | 99.6          |
| 58a      | Ac72       | 56089→56271          | 60             | 7.0                         | 58a      | Ac72         | 60             | 98.3          |
| 59       | Ac73       | 56282←56581          | 99             | 11.5                        | 59       | Ac73         | 99             | 96.0          |
| 60       | Ac74       | 56578←57381          | 267            | 30.9                        | 60       | Ac74         | 268            | 99.3          |
| 61       | Ac75       | 57399←57800          | 133            | 15.5                        | 61       | Ac75         | 133            | 100.0         |
| 62       | Ac76       | 57819←58076          | 85             | 9.6                         | 62       | Ac76         | 85             | 100.0         |
| 63       | vlf-1      | 58092←59231          | 379            | 44.3                        | 63       | vlf-1        | 379            | 99.7          |
| 64       | Ac78       | 59237←59569          | 110            | 12.7                        | 64       | Ac78         | 110            | 99.1          |
| 65       | Ac79       | 59572←59886          | 104            | 12.2                        | 65       | Ac79         | 104            | 100.0         |
| 66       | gp41       | 59889←61100          | 403            | 44.8                        | 66       | gp41         | 403            | 99.0          |
| 67       | Ac81       | 61090←61794          | 234            | 27.0                        | 67       | Ac81         | 234            | 99.6          |
| 68       | Ac82       | 61640←62185          | 181            | 20.1                        | 68       | Ac82         | 181            | 98.9          |
| 69       | p95        | 62151→64664          | 837            | 95.6                        | 69       | p95          | 839            | 99.5          |
| 09       | hr3        | 02131-04004          | 057            | 95.0                        | 09       | hr3          | 039            | 99 <b>.</b> 3 |
| 69a      | unknown    | 65475←65645          | 56             | 6.8                         |          | 111.5        |                |               |
|          |            |                      |                |                             | 70       |              | 126            | 100.0         |
| 70<br>71 | vp15       | 66184→66564          | 126            | 15.1                        | 70<br>71 | vp15         | 126            | 100.0         |
| 71       | cg30       | 66569←67372          | 267            | 30.7                        | 71       | cg30         | 267            | 99.3          |
| 72       | vp39       | 67375 <b>←</b> 68418 | 347            | 38.8                        | 72       | vp39         | 350            | 98.3          |
| 73       | lef-4      | 68437→69834          | 465            | 54.0                        | 73       | lef-4        | 465            | 99.4          |
| 74       | Acf91      | 69831←70295          | 154            | 17.3                        | 74       | Acf91        | 154            | 99.4          |
| 75       | <i>p33</i> | 70331←71110          | 259            | 30.9                        | 75       | <i>p33</i>   | 259            | 100.0         |
| 76       | Ac93       | 71109→71594          | 161            | 18.4                        | 76       | Ac93         | 161            | 100.0         |
| 77       | odv-e25    | 71603→72289          | 228            | 25.5                        | 77       | odv-e25      | 228            | 99.6          |
| 78       | dnahel     | 72328←75996          | 1222           | 143.6                       | 78       | dnahel       | 1222           | 99.8          |
| 79       | odv-e28    | 75983→76531          | 182            | 20.9                        | 79       | odv-e28      | 182            | 99.5          |
|          |            |                      |                |                             | 80       | bro-b        | 239            |               |
| 80       | bro-c      | 76619→77596          | 325            | 36.8                        | 81       | bro-c        | 318            | 95.0          |
| 81       | 38k        | 77741←78703          | 320            | 38.0                        | 82       | 38k          | 320            | 99.7          |
| 82       | lef-5      | 78638→79435          | 265            | 31.1                        | 83       | lef-5        | 265            | 100.0         |
| 83       | p6.9       | 79432←79629          | 65             | 8.1                         | 84       | p6.9         | 65             | 98.5          |
| 84       | p40        | 79671←80759          | 362            | 41.7                        | 85       | <i>p40</i>   | 362            | 98.6          |
| 85       | p12        | 80779←81156          | 125            | 13.7                        | 86       | <i>p12</i>   | 123            | 99.2          |
| 86       | p45        | 81137←82300          | 387            | 45.5                        | 87       | p45          | 387            | 99.5          |
| 87       | vp80       | 82326→84407          | 693            | 80.0                        | 88       | vp80         | 692            | 99.4          |
| 88       | he65       | 84430←85299          | 289            | 34.3                        | 89       | he65         | 289            | 97.9          |
|          | hr4L       |                      |                |                             |          | hr4L         |                |               |
| 89       | Ac106/107  | 85933→86682          | 249            | 28.9                        | 90       | Ac106/107    | 249            | 99.2          |
| 90       | Ac108      | 86683←87000          | 105            | 11.8                        | 91       | Ac108        | 105            | 100.0         |
| 91       | Ac109      | 87015←88190          | 391            | 45.0                        | 92       | Ac109        | 391            | 100.0         |
| 91a      | Ac110      | 88214←88393          | 59             | 7.1                         | 92a      | Ac110        | 59             | 100.0         |
| 92       | Ac111      | 88442←88645          | 67             | 8.2                         | 93       | Ac111        | 67             | 100.0         |
|          | hr4R       |                      | 0.             | ~ • • •                     |          | hr4R         | 5.             | 100.0         |
| 93       | Ac114      | 89320←90594          | 424            | 49.4                        | 94       | Ac114        | 424            | 100.0         |
| 94       | pif-3      | 90616←91230          | 204            | 23.0                        | 95       | pif-3        | 204            | 99.0          |

# 106 Xu et al.

Table 2. Continued

|      |             | BomaNPV                     |                |                             | BmNPV T3 strain |             |                | - Amino acid |
|------|-------------|-----------------------------|----------------|-----------------------------|-----------------|-------------|----------------|--------------|
| ORF  | Name        | Position                    | Length<br>(aa) | Predicted $Mr(\times 10-3)$ | ORF             | Name        | Length<br>(aa) | identity (%) |
| 94a  | Ac116       | 91238←91408                 | 56             | 6.5                         | 95a             | Ac116       | 56             | 94.6         |
| 95   | Ac117       | 91344→91631                 | 95             | 10.9                        | 96              | Ac117       | 95             | 100.0        |
| 96   | pif-1       | 91763→93346                 | 527            | 59.8                        | 97              | pif-1       | 527            | 99.1         |
| 97   | Ac120       | 93354→93602                 | 82             | 9.5                         | 98              | Ac120       | 82             | 98.8         |
| 97a  | Ac121       | 93705→93878                 | 57             | 6.7                         | 98a             | Ac121       | 57             | 94.7         |
| 98   | Ac122       | 93771←93956                 | 61             | 7.1                         | 99              | Ac122       | 61             | 98.4         |
| 99   | gcn2/Pk2    | 93990←94667                 | 225            | 26.1                        | 100             | gcn2/Pk2    | 225            | 99.1         |
| 100  | Ac124       | 94851→95585                 | 244            | 28.2                        | 101             | Ac124       | 244            | 98.0         |
| 101  | lef-7       | 95606←96289                 | 227            | 26.7                        | 102             | lef-7       | 227            | 96.5         |
| 102  | chitinase   | 96279←97934                 | 551            | 61.7                        | 103             | chitinase   | 552            | 99.1         |
| 103  | v-cath      | 97983→98954                 | 323            | 37.0                        | 104             | v-cath      | 323            | 99.1         |
| 104  | gp64/67     | 99071←100663                | 530            | 60.6                        | 105             | gp64/67     | 530            | 99.8         |
| 105  | <i>p24</i>  | 100790→101377               | 195            | 21.8                        | 106             | p24         | 195            | 100.0        |
| 106  | gp16        | 101405→101725               | 106            | 12.1                        | 107             | gp16        | 106            | 100.0        |
| 107  | <i>pp34</i> | 101787→102734               | 315            | 35.3                        | 108             | <i>pp34</i> | 315            | 99.7         |
| 108  | ac132       | 102737→103399               | 220            | 25.2                        | 109             | ac132       | 220            | 100.0        |
| 109  | alk-exo     | 103427→104689               | 420            | 48.5                        | 110             | alk-exo     | 420            | 99.5         |
| 109a | unknown     | 104733←104906               | 57             | 6.6                         | 110a            | unknown     | 57             | 98.2         |
| *110 | unknown     | $104805 \rightarrow 104975$ | 56             | 7.9                         | 111             | unknown     | 70             | 98.2         |
| 111  | p35         | $105151 \rightarrow 106050$ | 299            | 34.9                        | 112             | p35         | 299            | 100.0        |
|      | hr5         |                             |                |                             |                 | hr5         |                |              |
| 112  | <i>p26</i>  | 106931→107653               | 240            | 27.3                        | 113             | p26         | 240            | 98.8         |
| 113  | p10         | 107726→107938               | 70             | 7.6                         | 114             | p10         | 70             | 98.6         |
| 114  | p74=pif     | 108025←109962               | 645            | 74.1                        | 115             | p74=pif     | 645            | 99.7         |
| 115  | me53        | 110193←111551               | 452            | 52.7                        | 116             | me53        | 451            | 99.1         |
| 116  | ie-0        | 111828→112613               | 261            | 30.0                        | 117             | ie-0        | 261            | 100.0        |
| 117  | bv/odv-nc50 | 112628→114058               | 476            | 55.4                        | 118             | bv/odv-nc50 | 476            | 100.0        |
| 118  | odv-e18     | 114066→114371               | 101            | 10.4                        | 119             | odv-e18     | 101            | 100.0        |
| 119  | odv-ec27    | 114386→115258               | 290            | 33.5                        | 120             | odv-ec27    | 290            | 100.0        |
| 120  | Ac145       | 115273→115560               | 95             | 11.0                        | 121             | Ac145       | 95             | 100.0        |
| 121  | Ac146       | 115555←116160               | 201            | 23.0                        | 122             | Ac146       | 201            | 99.0         |
| 122  | ie-1        | 116226→117980               | 584            | 66.9                        | 123             | ie-1        | 584            | 99.7         |
| 123  | odv-e56     | 118069←119196               | 375            | 41.3                        | 124             | odv-e56     | 375            | 98.7         |
| 124  | Ac149       | 119225←119545               | 106            | 12.3                        | 125             | Ac149       | 106            | 98.1         |
| 125  | Ac150       | 119514→119861               | 115            | 13.3                        | 126             | Ac150       | 115            | 100.0        |
| 126  | ie-2        | 119894←121162               | 422            | 48.7                        | 127             | ie-2        | 422            | 99.1         |
| 127  | pe38        | 121593→122522               | 309            | 36.0                        | 128             | pe38        | 309            | 99.4         |
| 128  | Ac154       | 122623→122856               | 77             | 8.9                         | 129             | Ac154       | 77             | 100.0        |
|      | hr1         |                             |                |                             |                 | hr1         |                |              |
| 129  | ptp         | 123593→124099               | 168            | 19.2                        | 130             | ptp         | 168            | 97.0         |
| 130  | bro-d       | 124096←125142               | 348            | 40.3                        | 131             | bro-d       | 349            | 91.7         |
|      |             |                             |                |                             | 132             | bro-e       | 241            |              |
| 131  | Ac4         | 125215←125670               | 151            | 17.6                        | 133             | Ac4         | 151            | 98.0         |
| 132  | Ac5         | 125699→126028               | 101            | 12.4                        | 134             | Ac5         | 109            | 99.1         |
| 132  | lef-2       | 126009→126641               | 210            | 23.8                        | 135             | lef-2       | 210            | 99.5         |

# **Overlapping genes and intergenic regions**

Overlapping genes are found most commonly in rapidly evolving genomes with high mutation rates such as those of bacteria, mitochondria, bacteriophage and viruses. The presence of overlapping genes or regions has been hypothesized to be related not only to genome size minimization, but also to regulatory mechanisms of gene expression, both at the level of expression and at the level of protein-protein interaction (Normark *et al.*, 1983; Fukuda *et al.*, 1999; Krakauer, 2000; Johnson and Chisholm, 2004). The genome of BomaNPV contained 29 overlapping regions involving 52 genes. These include 6 "end-on" ( $\rightarrow \leftarrow$ ) overlapping pairs (ORF40-41, 42-42a, 42a-43, 73-74, 83-84, 97a-98, 120-121, 129-130), 7 "head-on" ( $\leftarrow \rightarrow$ ) overlapping pairs (ORF2-3, 68-69, 75-76, 78-79,

 Table 3. Comparisons of the sizes of four insertions in BomaNPV and BmNPV T3

| Virus           |            | ]              | The insertion size (bp) |     |         |
|-----------------|------------|----------------|-------------------------|-----|---------|
| viius           | p47—lef-12 | he65—orf89(90) | he65—hr4L               | hr1 | hr1—ptp |
| BomaNPV         | 4          | 633            | 365                     | 383 | 327     |
| BmNPV T3 strain | 59         | 489            | 218                     | 592 | 133     |

81-82, 94a-95, 124-125) and 16 "uni-directional"  $(\rightarrow \rightarrow)$  overlapping pairs (ORF5-6, 7a-8, 8-9, 27-28, 28-29, 34-35, 36-37, 42-42a, 42a-43, 56-57, 59-60, 66-67, 67-68, 85-86, 101-102, 132-133), according to the classification defined by Fukuda *et al.* (1999). Disppointingly, they showed no significant difference from the BmNPV T3 strain.

Comprising promoters, enhancers, and other regulatory elements, intergenic regions play an important role in the transcription of genes (Pinschewer et al., 2005; López and Franze-Fernández, 2007; Nakagawa et al., 2008). Among the baculoviruses, the intergenic regions of LsNPV occupied 17.2% of genome, the highest known so far (Xiao and Qi, 2007). In BomaNPV, this number was 9.6%, the same as BmNPV T3. Most of the intergenic regions were similar to those in the BmNPV T3 strain; however, the intergenic region between p47 and lef-12 was 4 bp in BomaNPV but 49 bp in BmNPV, and that between he65 and orf89 (Bm90) was 633 bp in BomaNPV but 489 bp in BmNPV (Table 3). In addition, the size of the insertion between hr1 and ptp of BomaNPV was significantly larger than that of BmNPV T3 (327 bp vs. 133 bp), while the sizes of hr1 of BomaNPV and BmNPV T3 were reversed (383 bp vs. 592 bp) (Table 3). These results implied that the utilization rate of genomic nucleotides by BomaNPV was similar to that of the BmNPV T3 strain. It appears that it may have been difficult for the genomes to diverge, considering that BmNPV and BomaNPV may have coevolved with *Bombyx* for a long time.

## Arif-1

Arif-1, actin-rearrangement-inducing factor, was able to induce actin rearrangement in Tn-368 cells (Roncarati and Knebel-Mörsdorf, 1997). It was found to colocalize with Factin at the plasma membrane, but didn't play a significant role in the propagation of budded viruses (BVs) as analyzed by mutants (Dreschers et al., 2001). The proline-rich Cterminus was essential for transporting and/or anchoring Arif-1 at the plasma membrane. Compared with the T3 strain, the Arif-1's counterpart in BomaNPV lacked a Pro-rich sequence of 22 amino acids (PVPTAPVKPPTPPVPTAHVPTP) (Fig. 1), which might be relevant to its function of localization (Pancio et al., 2000; Gan et al., 2004; Kane et al., 2004). This extra Prorich residue couldn't be found in baculoviruses other than the T3 strain, suggesting that this sequence was specific for T3. When the structure of Arif-1 of BomaNPV was analyzed by PredicProtein (http://www.predictprotein.org/), four membrane helices were detected at the N-terminus and the C-terminus of about 20aa was a long loop with a NLS (Nuclear Localization Signal) site (QRKFKERK). Besides, lots of Protein-Protein

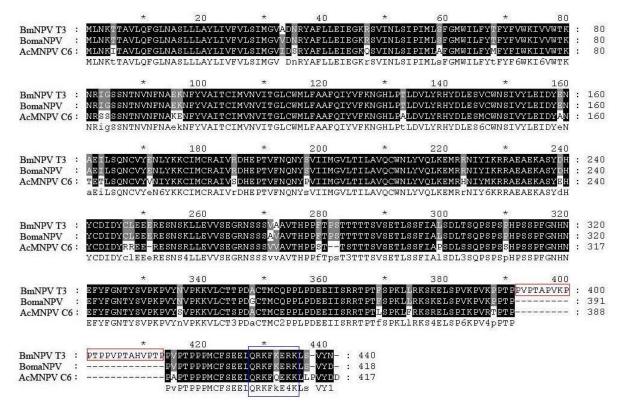



Fig. 1. Comparison of Arif-1 in BomaNPV, BmNPV T3 strain, and AcMNPV C6.

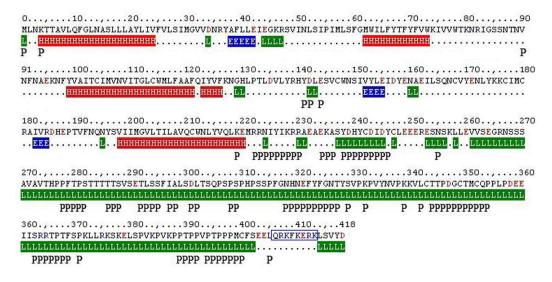



Fig. 2. Analysis of the structure of BomaNPV Arif-1.

**H** represents the Helix, **E** represents the Sheet, **L** represents the Loop, QRKFKERK in blue frame represent the NLS (Nuclear Localization Signal), meeting the rule of [QMN]R[RK]xKx[RK][RK]

interaction sites were found at the C-terminus of Arif-1 (Figs. 1 and 2). These comfirmed the importance of the proline-rich C-terminus for Arif-1 localizing or transporting.

# Baculovirus repeated ORFs (bro genes)

The presence of bro genes is a notable feature in baculoviruses, with various copies present in the baculovirus genomes identified so far. As reported by (Kang et al., 1999), all five of the bro genes in BmNPV T3 were described as early genes, and they might be involved in some other important viral functions rather than in host range, according to the results of a mutant analysis achieved by deleting bro-a, bro-c, bro-b or bro-e. According to further research by Kang et al. (2006), BmNPV BRO proteins (especially BRO-A and BRO-C) contained a nucleic acid binding activity involved in nucleosome organization in infected cells and might function as laminin binding proteins that could influence host DNA replication (Zemskov et al., 2000; Kang et al., 2003). Furthermore, BRO proteins were identified as nucleocytoplasmic shuttling proteins utilizing the CRM1-mediated nuclear export pathway for there was a leucine-rich region in the N-terminal region that functions as a CRM1-dependent nuclear export signal (NES) (Kang et al., 2006). There were three bro genes (ORF22, ORF31, and ORF131) present in the genome of BomaNPV, referred to as bro-a, bro-c, and bro-d, respectively, which showed strong homology to the corresponding genes of the BmNPV T3 strain. The sizes of the proteins, however, are different, with those from BomaNPV being 330 aa, 325 aa, and 348 aa, respectively, while those of the BmNPV T3 strain are 317 aa, 318 aa, and 349 aa. Compared with the other genes, bro-a and bro-d showed the highest and the lowest identity, respectively, to their homologs in the BmNPV T3 strain. According to the protein classification defined by Kuzio et al. (1999), all three bro genes (bro-a, bro-c, and bro-d) belonged to Group I. While bro-a fell into Subgroup B with bro-c, bro-d was placed in Subgroup A based on further analysis by Kang et al. (1999). Significantly, however, bro-b and bro-e, belonging

to Subgroup B, were absent in BomaNPV, in contrast to BmNPV T3. Similarly, only three bro genes were found in the BmNPV SC7 isolate, but each of them belonged to one of the three subgroups present in the BmNPV T3 strain (Table 4) (López Ferber et al., 2001). Maybe different bro genes of different subgroups have diverse functions. To date, bro-d is the only bro gene generally present in baculovirus genomes. Its homolog was first found in the AcMNPV genome as ORF2, and was the only copy in that genome, indicating that bro-d gene may play a special role in the virus life cycle. Notably, bro-d was found to be essential for viral growth in BmN cells, while bro-a and bro-c might complement each other (Kang et al., 1999, 2006). However, the significance of the presence of BRO-B and BRO-E remains an open question. They were found only in the cytoplasm of BmN cells infected with BmNPV, while BRO-A/C and BRO-D localized in the cytoplasm and the nucleus (Kang et al., 1999).

# Baculovirus homologous repeat regions (hrs)

The baculovirus hrs have been implicated both as origins of DNA replication and transcriptional enhancers (Rodems and Friesen, 1993), but their functional significance is still unknown. It has been demonstrated that deletion of each single hr, or two hrs, fails to affect virus replication in cell culture (Carstens and Wu, 2007). There were seven hrs (hr2L, hr2R, hr3, hr4L, hr4R, hr5, hr1) in the BomaNPV genome,

**Table 4.** Distribution of *bro* genes in BomaNPV, BmNPV T3, andBmNPV SC7

| Virus     | Subfamily <sup>a</sup> |              |              |  |  |  |  |
|-----------|------------------------|--------------|--------------|--|--|--|--|
| virus     | Subgroup A             | Subgroup B   | Subgroup C   |  |  |  |  |
| BomaNPV   | bro-d                  | bro-a, bro-c |              |  |  |  |  |
| BmNPV T3  | bro-d                  | bro-a, bro-c | bro-b, bro-e |  |  |  |  |
| BmNPV SC7 | bro-III                | bro-II       | bro-I        |  |  |  |  |

<sup>a</sup> Subfamily was refered to Kang et al. (1999)

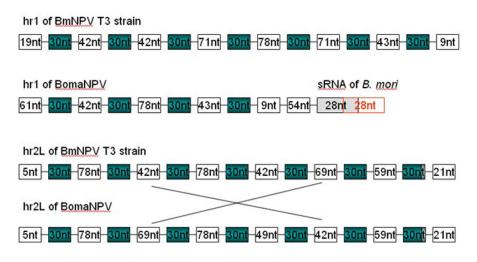



Fig. 3. Comparisons of hr1 and hr2L of BomaNPV S1 and BmNPV T3.

Green boxes represent the core palindrome, **42nt** white boxes represent insertion sequence between palindromes and the sequences in boxes containing same number of nucleotides have exceeding identity.

located at different sites, as in the BmNPV T3 genome. All hrs showed strong identity to those of the BmNPV T3 strain in nucleotide analysis [hr2L (90.9%), hr2R (99.3%), hr3 (96.3%), hr4L (94.4%), hr4R (98.1%), hr5 (95.6%), hr1 (92.4%)]. The second and fifth insertion sequences between palindromes of hr2L, however, seem to have experienced shifts between the BmNPV T3 strain and BomaNPV (Fig. 3). In addition, hr1 of BomaNPV lacked two repeat units, compared with that of the BmNPV T3 strain. Interestingly, there was an extra inserted sequence of 194 bp following the end of hr1 in the BomaNPV but not in the T3 strain. This insert possesses a special sequence (CTGTTATAAGACGGCCCTGTACCCTTTACTG CTGACA). The 28 nucleotides as shown in the frame and in grey were 100% identical to two ovarian small RNAs in B. mori. These RNAs were believed to cooperate in the regulation of transposon activity (Kawaoka et al., 2008), and might be involved in defense against viruses. This special sequence might have been acquired from the host by this baculovirus when it coevolved with its host, and may confer a survival advantage on the virus.

# Infectivity of PIB in *B. mori* larvae: BomaNPV compared to BmNPV T3

To investigate whether BomaNPV has greater pathogenicity than BmNPV T3, the  $LC_{50}$  of the PIB in *B. mori* larvae was examined. The data revealed that the  $LC_{50}$  of BomaNPV was 18 fold higher than that of the BmNPV T3 strain (Table 5). This result showed that the BmNPV T3 strain was more infectious to the domesticated silkworm than was BomaNPV. This might be due to the coevolution of the BmNPV T3 strain, but not BomaNPV, with *B. mori* contributing an advantage to the BmNPV T3 strain.

In conclusion, the complete BomaNPV genome was determined and compared with that of the BmNPV T3 strain. The sequence and biological data suggested strongly that BomaNPV S1 and BmNPV T3 are variants with each other. Regarding the differences between BomaNPV and BmNPV T3, the hr1 and *bro* genes should be highlighted, especially the *bro* genes, for their close correlation with the evolution of baculoviruses. These results supported the idea that baculovirus strain heterogeneity may be often caused by SNPs in the whole genome and viriation in the hrs and bro genes (Zhang *et al.*, 2005). The result of PIB bioassays indicated that BmNPV T3 was more infectious than BomaNPV for the domesticated silkworm. Understanding the basis for this difference will require further analysis of the changes in the 102 putative genes that diverge between the two strains.

# Acknowledgements

This project was supported by the grants from the National Natural Science Foundation of China (30271008 and 30570074).

#### References

Astaurov, B.L., M.D. Golysheva, and I.S. Rovinskaya. 1959. Chromosome complex of Ussuri geographical race of *Bombyx mandarina* M. with special reference to the problem of the origin of the domesticated silkworm, *Bombyx mori. Cytology* 1, 327-332.

Carstens, E.B. and Y. Wu. 2007. No single homologous repeat region

Table 5. Concentration mortality of BomaNPV and BmNPV T3 for fourth instar B. mori larvae

| Virus           | Regression equation       | χ <sup>2</sup> | Р      | LC <sub>50</sub> | 95% confidence limit (PIB/ml) |            | LC <sub>50</sub> | 95% confidence |
|-----------------|---------------------------|----------------|--------|------------------|-------------------------------|------------|------------------|----------------|
| viius           |                           | value v        | value  | (PIB/ml)         | Lower                         | Upper      | Ratio            | interval       |
| BomaNPV         | $y=0.5482 \times +0.6345$ | 0.7219         | 0.6970 | 91810393         | 21980125                      | 2554219106 | 0.0515           | 0.0093-0.2860ª |
| BmNPV T3 strain | y=1.2613×-3.4185          | 0.7155         | 0.3611 | 4725461          | 2140349                       | 8398903    | 0.0313           | 0.0093-0.2800* |

<sup>a</sup> If the  $LC_{50}$  ratio in the 95% confidence interval includes value 1, the model is determined to be statistically significant.

110 Xu et al.

is essential for DNA replication of the baculovirus *Autographa* californica multiple nucleopolyhedrovirus. J. Gen. Virol. 88, 114-122.

- Chikushi, H. 1972. Genes and genetic stocks of the silkworm, pp. 1-6. Keigaku Publications, Tokyo, Japan.
- Dreschers, S., R. Roncarati, and D. Knebel-Morsdorf. 2001. Actin rearrangement-inducing factor of baculoviruses is tyrosine phosphorylated and colocalizes to F-actin at the plasma membrane. *J. Virol.* 75, 3771-3778.
- Finney, D.J. 1971. Probit Analysis. Cambridge University Press, Cambridge, UK.
- Fukuda, Y., T. Washio, and M. Tomita. 1999. Comparative study of overlapping genes in the genomes of *Mycoplasma genitalium* and *Mycoplasma pneumoniae*. *Nucleic Acids. Res.* 27, 1847-1853.
- Gan, X., Z. Ma, N. Deng, J. Wang, J. Ding, and L. Li. 2004. Involvement of the C-terminal proline-rich motif of G proteincoupled receptor kinases in recognition. *J. Biol. Chem.* 279, 49741-49746.
- Jehle, J.A., G.W. Blissard, B.C. Bonning, J.S. Cory, E.A. Herniou, G.F. Rohrmann, D.A. Theilmann, S.M. Thiem, and J.M. Vlak. 2006. On the classification and nomenclature of baculoviruses: a proposal for revision. *Arch. Virol.* 151, 1257-1266.
- Johnson, Z.I. and S.W. Chisholm. 2004. Properties of overlapping genes are conserved across microbial genomes. *Genome Res.* 14, 2268-2272.
- Kane, L.P., M.N. Mollenauer, and A. Weiss. 2004. A proline-rich motif in the C terminus of Akt contributes to its localization in the immunological synapse. J. Immunol. 172, 5441-5449.
- Kang, W.K., N. Imai, M. Suzuki, M. Iwanaga, S. Matsumoto, and E.A. Zemskov. 2003. Interaction of *Bombyx mori* nucleopolyhedrovirus BRO-A and host cell protein laminin. *Arch. Virol.* 148, 99-113.
- Kang, W., M. Kurihara, and S. Matsumoto. 2006. The BRO proteins of *Bombyx mori* nucleopolyhedrovirus are nucleocytoplasmic shuttling proteins that utilize the CRM1-mediated nuclear export pathway. *Virology* 350, 184-191.
- Kang, W., M. Suzuki, E. Zemskov, K. Okano, and S. Maeda. 1999. Characterization of baculovirus repeated open reading frames (*bro*) in *Bombyx mori* nucleopolyhedrovirus. *J. Virol.* 73, 10339-10345.
- Kawaguchi, E. 1928. Zytologische Untersuchungen am Seidenspinner und seinen Verwandten. I. Gametogenese von Bombyx mori L. und B. mandarina M. und ihrer Bastar. Z. Zellforsch. Mikrosk. Anat. 7, 519-552.
- Kawaoka, S., N. Hayashi, S. Katsuma, H. Kishino, Y. Kohara, K. Mita, and T. Shimada. 2008. *Bombyx* small RNAs: genomic defense system against transposons in the silkworm, *Bombyx mori. Insect Biochem. Mol. Biol.* 38, 1058-1065.
- Keddie, B.A., G.W. Aponte, and L.E. Volkman. 1989. The pathway of infection of *Autographa californica* nuclear polyhedrosis virus in an insect host. *Science* 243, 1728-1730.
- Krakauer, D.C. 2000. Stability and evolution of overlapping genes. *Evolution* 54, 731-739.
- Kuzio, J., M.N. Pearson, S.H. Harwood, C.J. Funk, J.T. Evans, J.M. Slavicek, and G.F. Rohrmann. 1999. Sequence and analysis of the

genome of a baculovirus pathogenic for *Lymantria dispar. Virology* 253, 17-34.

- López Ferber, M., O. Argaud, L. Croizier, and G. Croizier. 2001. Diversity, distribution, and mobility of *bro* gene sequences in *Bombyx mori* nucleopolyhedrovirus. *Virus Genes* 22, 247-254.
- López, N. and M.T. Franze-Fernández. 2007. A single stem-loop structure in Tacaribe arenavirus intergenic region is essential for transcription termination but is not required for a correct initiation of transcription and replication. *Virus Res.* 124, 237-244.
- Ma, X.C., H.J. Xu, M.J. Tang, Q. Xiao, J. Hong, and C.X. Zhang. 2006. Morphological, phylogenetic, and biological characteristics of *Ectropis obliqua* single-nucleocapsid nucleopolyhedrovirus. J. Microbiol. 44, 77-82.
- Nakagawa, H., M. Tategu, R. Yamauchi, K. Sasaki, S. Sekimachi, and K. Yoshida. 2008. Transcriptional regulation of an evolutionary conserved intergenic region of CDT2-INTS7. *PLoS. ONE.* 3, e1484.
- Nakamura, T., Y. Banno, T. Nakada, S.K. Nho, M.K. Xü, K. Ueda, T. Kawarabata, Y. Kawaguchi, and K. Koga. 1999. Geographic dimorphism of the wild silkworm, *Bombyx mandarina*, in a chromosome number and the occurrence of a retroposon-like insertion in the arylphorin gene. *Genome* 42, 1117-1120.
- Normark, S., S. Bergström, T. Edlund, T. Grundström, B. Jaurin, F.P. Lindberg, and O. Olsson. 1983. Overlapping genes. Ann. Rev. Genet. 17, 499-525.
- Pancio, H.A., N. Vander Heyden, and L. Ratner. 2000. The Cterminal proline-rich tail of human immunodeficiency virus Type 2 Vpx is necessary for nuclear localization of the viral preintegration complex in nondividing cells. J. Virol. 74, 6162-6167.
- Pinschewer, D.D., M. Perez, and J.C. de la Torre. 2005. Dual role of the lymphocytic choriomeningitis virus intergenic region in transcription termination and virus propagation. J. Virol. 79, 4519-4526.
- Rodems, S.M. and P.D. Friesen. 1993. The hr5 transcriptional enhancer stimulates early expression from the *Autographa californica* nuclear polyhedrosis virus genome but is not required for virus replication. J. Virol. 67, 5776-5785.
- Roncarati, R. and D. Knebel-Mörsdorf. 1997. Identification of the early actin-rearrangement-inducing factor gene, *arif-1*, from *Autographa californica* multicapsid nuclear polyhedrosis virus. J. Virol. 71, 7933-7941.
- Tang, Q. and M. Feng. 2002. DPS Data Processing System for Practical Statistics. Science Press, Peking, China.
- Xiao, H. and Y. Qi. 2007. Genome sequence of *Leucania seperata* nucleopolyhedrovirus. *Virus Genes* 35, 845-856.
- Yoshitake, N. 1968. Phylogenetic aspects on the origin of Japanese race of the silkworm, *Bombyx mori L. J. Sericult. Sci. Jpn.* 37, 83-87.
- Zemskov, E.A., W. Kang, and S. Maeda. 2000. Evidence for nucleic acid binding ability and nucleosome association of *Bombyx mori* nucleopolhedrovirus BRO proteins. J. Virol. 74, 6784-6789.
- Zhang, C.X., X.C. Ma, and Z.J. Guo. 2005. Comparison of the complete genome sequence between C1 and G4 isolates of the Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus. *Virology* 333, 190-199.